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We consider the electron transport through a very thin disordered metal-

lic film doped with magnetic impurities. We treat the film as a quasi-two-

-dimensional system with structural disorder where some ions have spins

and other are spinless. The interaction of conduction electrons with local-

ized spins is described by means of the exchange term of the Hamiltonian.

The scattering is treated in the first Born approximation and the potential

is assumed to be the Coulomb screened one. The total effective cross-section

is calculated as a sum of the part responsible for the potential scattering

and the second part which comes from the spin–spin scattering. The Fermi

sphere splits into separate sheets due to the finite size of the system in the z

direction, therefore, the cross-section and the relaxation time are calculated

for each sheet independently. The total transport relaxation time and the

conductivity are obtained as functions of the thickness of the system and the

contents of magnetic impurities. Some model calculations have been made

for a thin disordered film of copper doped with manganese.

PACS numbers: 72.15.Cz, 72.25.Ba, 73.50.–h, 73.63.–b

1. Introduction

The theoretical description of the electron transport through various nano-
structures is very important for further development of nanoelectronics [1]. The
electrons carry not only the charge but also the spin and this fact is widely ex-
ploited in spintronics [2–4]. It should certainly be taken into account when some
element of a nanocircuit contains magnetic impurities because an additional scat-
tering then appears [5–7]. The experimental results have stimulated the develop-
ment of different approaches to the problem of transport in such structures [8–10].
In this work we concentrate on the problem of conduction of the polarized carri-
ers through a very thin disordered metallic film doped with magnetic impurities
thus forming a kind of a binary alloy. A novelty in our approach is that we take
into account correlations in locations of potentials by means of structure factors,
contrary to other authors which use uncorrelated delta-like potentials. We treat
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the electron gas as quasi-two-dimensional due to a finite size of the system in the
z direction. The Fermi sphere then splits into separate sheets, as was proved in
our previous work [11] and independently by Balcerzak [12]. Thus we first calcu-
late the transport relaxation time for electrons in one specific sheet of the Fermi
surface and then sum up over all sheets to get the total conductivity as a function
of the thickness of thin film and the concentration of magnetic impurities. This
is essential for producing spintronic nanodevices having specifically determined
properties.

2. Theoretical model

Let us consider thin disordered metallic film, which contains NA nonmagnetic
atoms and NB magnetic impurities positioned at random. Let us assume that the
impurities concentration x = NB/(NA +NB) is small and they are polarized along
the z axis, perpendicular to the film. Because of the finite size Lz of the film the
Fermi sphere splits into a finite number of sheets lying in the planes perpendicular
to the z axis [11, 12]. We treat the set of electrons which belong to such a sheet
as an independent subband of constant kz. We describe their coordinates in real
and reciprocal spaces within these sheets by the vectors ρ and kρ, respectively.

The dynamics of the electron in such film is given by the Hamiltonian

Ĥ = − h̄2

2m∗∇2 + U(ρ), (1)

where m∗ is the electron effective mass. The potential U(ρ) is a sum of two terms

U(ρ) = U0(ρ) + Uss(ρ), (2)
where U0(ρ) =

∑NA

l=1 u(ρ −Rl) +
∑NB

i=1 u(ρ −Ri) is the potential of the system
(u(ρ − Rl) and u(ρ − Ri) are the potentials of the individual ions located at
the respective sites Rl or Ri). Uss(ρ) represents energy of the interaction of the
conduction electron spin, s(ρ), with the spins of magnetic impurities localized at
the sites Ri. It can be expressed as [13]

Uss(ρ) = −
NB∑

i=1

J0(ρ−Ri)S(Ri) · s(ρ), (3)

where S(Ri) is the impurity spin operator.
We further assume that the coupling constant of the interaction between the

conduction electron and the magnetic impurity has a form typical for the contact
interaction

J0(ρ−Ri) = J0δ(ρ−Ri) (4)
and then Eq. (3) takes the form

Uss(ρ) = −J0

NB∑

i=1

Sz(Ri)sz(ρ)δ(ρ−Ri), (5)

which comes from our primary assumption of complete polarization of the impu-
rities.
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The problem of scattering of conduction electrons in such system can be
conveniently described by means of the Lipmann–Schwinger integral equation [14]

Ψ(ρ) = Φ(ρ) +
2m∗

h̄2

∫
d2ρ′G(ρ, ρ′)U(ρ′)Ψ(ρ′), (6)

where Ψ(ρ) and Φ(ρ) are spinors, whereas G(ρ, ρ′) is the Green function given
by

G(ρ, ρ′) = − 1
(2π)2

∫
d2q

exp(iq · (ρ− ρ′))
q2 − k2

ρ

, (7)

where kρ is the maximal value of the wave vector in the x−y plane for a specific
sheet.

We apply the perturbation method to solve the integral equation (6) which
allows us to find the differential cross-section in the first Born approximation [15].
The use of this method means that we focus on the case of weak electron-impurity
scattering specified by the Ioffe–Regel criterion [16]. In this case the weak lo-
calization corrections which are caused by quantum interference effects are small
compared with the Drude conductivity [17–19]. The total effective differential
cross-section for scattering of the completely polarized conduction electrons in the
considered system has the following form:

dσ

dϕ
=

dσ
(A)
0

dϕ
+

dσ
(B)
0

dϕ
+

dσ
(B)
↑↑

dϕ
, (8)

where the upper indices, A and B, denote the atoms of the matrix and impurities,
respectively. The lower index 0 marks the cross-sections related to the potential
scattering while index ↑↑ marks the one responsible for the spin–spin scattering.

The effective cross-section for polarized electrons was calculated in [11] as

dσ
(i)
0

dϕ
=

1
8πkρ

(
m∗

2πh̄2

)2

NiSi(q) |uai(q)|2 , (9)

where uai is the Fourier transform of the i-th type of atomic scattering potential,
Si(q) is the i-th partial structure factor, and Ni is the number of i-th type of atoms
in the system. Using the partial structure factors in the calculations means that we
assume a realistic case that scattering potentials have a finite range, comparable
with the size of atoms, contrary to other authors who treat the scattering potentials
as delta-like ones. The values of the wave vectors kρ and q have the form [11]

kρ =

√
2m∗

h̄2 EF −
(

mπ

Lz

)2

, (10)

q = 2kρ sin(ϕ/2), (11)
where m is the subband index and Lz — the thickness of the film.

The formula for effective differential cross-section given by Eq. (8) is an
approximation because we neglected the cross terms coming from the fact that
the considered system is a two-component one. A numerical analysis has shown
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that the contribution of the neglected term which describes the correlations be-
tween different atoms (A−B) is approximately constant and its value is small in
comparison to the correlations between atoms of the same type (A−A, B−B).

The effective cross-section for the scattering of electrons from the impurity
spins has the form

dσ
(B)
↑↑

dϕ
=

1
8πkρ

(
m∗J0

2πh̄2

)2

S(S + 1)NBSB(q). (12)

This completes the formula (8) and makes it ready for calculations.

3. Transport relaxation time

A general formula for the inverse transport relaxation time in the quasi-two-
-dimensional system has the form [11]

τ−1 = 2
vF

A

∫ π

0

dϕ
dσ

dϕ
(1− cosϕ), (13)

where A is the area of its surface. We now have to assume something about
the structure factors and atomic potentials to proceed further. The considered
system is actually a two-component amorphous alloy. Its structure should be
characterized by three structure factors, in principle. However, if the concentration
of one component is small then quite an accurate description of the structure can
be done by only two partial structure factors, which we denote SA(q) and SB(q),
respectively. To describe the transport properties of thin film we can approximate
both structure factors by power functions which is a good approximation at least
for q < 2kF. We found that the best approximation is SA(q) = αAq6 and SB(q) =
αBq6.

Atomic potential can be described by means of the Coulomb screened po-
tential

uai(ρ) = ui
exp(−λiρ)

ρ
, (14)

where λi is the inverse screening length in the Thomas–Fermi model. The Fourier
transform of the potential (14) has the following form:

uai(q) = 2πui
1√

λ2
i + q2

. (15)

Substituting all that to Eq. (13) we obtain the inverse total transport relaxation
time as the sum of three terms

τ−1 = τ−1
A + τ−1

B + τ−1
↑↑ , (16)

where the inverse transport relaxation time τ−1
A has the form

τ−1
A =

8
π

m∗

h̄3 (1− x)nαAk4
ρu2

A

∫ π

0

dϕ
sin8(ϕ/2)(

λA

2kρ

)2

+ sin2(ϕ/2)

≡ 8
π

m∗

h̄3 (1− x)nαAk4
ρu2

AI

(
λA

2kρ

)
(17)
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and, analogously, τ−1
B has the form

τ−1
B =

8
π

m∗

h̄3 xnαBk4
ρu2

B

∫ π

0

dϕ
sin8(ϕ/2)(

λB

2kρ

)2

+ sin2(ϕ/2)

≡ 8
π

m∗

h̄3 xnαBk4
ρu2

BI

(
λB

2kρ

)
, (18)

whereas the inverse spin–spin transport relaxation time τ−1
↑↑ can be expressed as

τ−1
↑↑ =

8
π

m∗

h̄3 xnαBk6
ρJ2

0S(S + 1)
∫

dϕ sin8(ϕ/2), (19)

where n = N/A denotes the average area density of atoms.
After inserting the formulae (17)–(19) into Eq. (16) we obtain the inverse

transport relaxation time for the m-th sheet of the Fermi surface

τ−1
m =

8
π

m∗

h̄3 n

{
(1− x)αAk4

ρu2
AI

(
λA

2kρ

)

+xαBk4
ρ

[
u2

BI

(
λB

2kρ

)
+

35π

128
k2

ρJ2
0S(S + 1)

]}
, (20)

where the dependence on the number m comes from kρ (Eq. (10)). The total
conductivity of the film is given by the sum of the partial conductivities for each
sheet

σ(Lz, x) =
mmax∑
m=0

σm(Lz, x), (21)

where the conductivity for m-th sheet

σm(Lz, x) =
1
Lz

nme2τm

m∗ (22)

depends on the area concentration of carriers, nm, in each sheet, either [20]. The
upper limit of the summation, nmax, depends on the system size Lz.

We analyzed, as an example, a specific system which consists of the matrix
made of copper (component A) with manganese impurities (component B). We
evaluated the total electrical conductivity σ as a function of the manganese con-
centration x for various thicknesses Lz of the film. The results are shown in Fig. 1.
The conductivity slightly rises with a concentration of magnetic impurities. It can
be understood because we assumed polarized subsystem of magnetic ions and po-
larized current of carriers. Their polarizations are compatible which makes the
transport easier. The absolute values of conductivity decrease with the thickness
Lz of the film. It is an intrinsic feature of the model, because σ is — roughly —
inversely proportional to L2

z.

4. Conclusions

We have shown how to calculate the conductivity of a very thin disordered
metallic film with magnetic impurities when the electric current consists of fully
polarized electrons. The final results depend on the thickness of the film and the
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Fig. 1. The electrical conductivity σ of a very thin disordered metallic film with mag-

netic impurities as a function of the concentration x of these impurities for several values

of the film thickness Lz.

concentration of the impurities. The conductivity increases with concentration of
magnetic impurities and decreases with the thickness of the film. These results
can be important for constructing some spintronics devices.
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