
A

h
2
(
©

P

K

1

o
f
u
s
m
c
f
a
t
i
c
r
s
x
a
h

0
d

Journal of Alloys and Compounds 442 (2007) 365–367

Magnetic properties of TbMn2(H,D)x

L. Kolwicz-Chodak a, Z. Tarnawski a,∗, H. Figiel a, N.-T.H. Kim-Ngan b,
A.W. Pacyna c, L. Havela d, K. Miliyanchuk d, E. Šantavá e
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bstract

The aim of this paper is to investigate the influence of hydrogenation on thermodynamic properties of intermetallic compound TbMn2. Specific
eat, ac susceptibility and magnetization of three samples: TbMn2, TbMn2H0.5 and TbMn2(H,D)2 have been measured. For the sample with x = 0 and

.0, at the Néel temperature (TN), where a single and/or double specific heat peak was observed, an anomaly was also revealed in the susceptibility
respectively at 47 K, and at 281 K and 288 K).

2007 Elsevier B.V. All rights reserved.
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. Introduction

The cubic C15 type Laves-phase TbMn2 undergoes a first-
rder phase transition at the Néel temperature TN = 47 K. The
ormation of Mn moments below TN is accompanied by a vol-
me increase of 1.6% [1]. The neutron diffraction study on a
ingle crystal of TbMn2 suggested a complicated multiphase
agnetic structure in both the Mn and Tb sublattice [2]. TbMn2

an easily absorb hydrogen and/or deuterium up to 4.5 atoms per
ormula unit. At room temperature, the hydrogen (or deuterium)
toms are distributed randomly at the 96g site (i.e. the hollow
ype A2B2). A drastic increase of the Néel temperature, a strong
nfluence the magnetic properties and a large modification of the
rystal structure by the hydrogen/deuterium absorption has been
evealed [3,4]. The specific heat measurement have revealed a
ingle peak respectively at 47 K and 248 K for the sample with

= 0 and 0.5, while a double peak was observed in the temper-
ture range 270–300 K for x = 2.0 and 3.0 [5]. Increasing the
ydrogen concentration from x = 2.0 to 3.0 significantly affects
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he shape of the double SH peak, i.e. from the two well-defined
axima into one sharp peak and a shoulder.
In this work we present the AC susceptibility and magnetiza-

ion measurements on three chosen hydrides samples: TbMn2,
bMn2H0.5 and TbMn2(H,D)2. We focus our investigations

n the temperature range where the specific heat peaks were
resent.

. Experimental details

The hydrides samples (the deuterated (D) and the mixed hydrided-deuterated
H,D) ones) have been prepared by a standard technique for the hydrogenation
rocess [3,4].

The ac susceptibility measurements were performed using a ac susceptome-
er/dc magnetometer (Lake Shore 7225). Magnetization measurements were
erformed on a Quantum Design Physical Properties Measuring System (PPMS)
agnetometer in applied external magnetic field up to 9 T. The specific heat mea-

urements have been carried out on two different set-ups as reported previously
5].
. Results and discussion

Fig. 1 shows the temperature dependence of dc susceptibility
or TbMn2 measured at an external field H0 of 100 Oe cooled
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Fig. 1. The dc susceptibility of TbMn2 measured at an external field H0 of
100 Oe, in zero field cooled (ZFC) and in field cooled (FC), and at 10 kOe in
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Fig. 2. The real (χ′) and imaginary part (χ′′) of the first (closed markers) and
third harmonic (open markers) of ac susceptibility for TbMn2. The first harmonic
was measured at a frequency f = 125 Hz and at Hac = 1 Oe, and the third harmonic
was at f = 125 Hz and at Hac = 5 Oe.
FC condition. For a comparison the specific heat data at the phase-transition
eak was also shown.

n zero field (ZFC) as well as in the external field (FC) and
t external field of 10 kOe. A large maximum was revealed at
he temperature TN, where a specific heat peak was observed,
ttributed to the phase transition to an antiferromagnetic order.
owever, a small shift of TN with increasing magnetic field
as found; a value for the phase-transition temperature TN of
7.75 K, and 45.5 K was estimated respectively at H0 = 100 Oe
nd 10 kOe. A broad bump was observed in ZFC, respectively
t 22.25 K and 19.85 K, i.e. it shifted to lower temperatures
ith increasing magnetic field, similar to TN. For H0 = 100 Oe,

he maximum at TN was found to be amplified by cooling in
eld. Moreover, field cooling implies a large enhancement of

he susceptibility at low temperatures. It was attributed to some
xtra contribution from orientation of Mn magnetic moment in
xternal field.

The temperature dependence of the first- and third harmonic
f the real (χ′) and imaginary part (χ′′) of susceptibility was
easured for TbMn2 and TbMn2H0.5. Namely the first har-
onic was measured at a frequency f = 125 Hz and at Hac = 1 Oe,

nd the third harmonic (χ′
3(T ), χ′′

3(T )) was at f = 125 Hz and at
ac = 5 Oe. The data for TbMn2 were shown in Fig. 2. The first
armonic of the real part revealed a single maximum at 49.9 K
TN) and a broad bump at 23.8 K, while the third harmonic χ′

3
xhibited a small maximum at 51 K (above TN) and a deep asym-
etric minimum at 46 K (below TN). Moreover, the extra broad

ump around 25 K was only revealed in the χ′(T) curve, whereas
o anomaly in χ′′

3(T ) was observed in this temperature range.
or the imaginary part, a single peak was observed at TN in both

he χ′′(T) and χ′′
3(T ) curve. A distinguished broad maximum was

lso revealed around 25 K in the χ′′(T) curve, while there was
o anomaly in the χ′′

3(T ) curve. The hydrogenation implies a
arge suppression of AC susceptibility in TbMn2H0.5, as shown
n Fig. 3. However, the χ′(T) revealed a similar feature as that
or TbMn2 with a broad maximum at TN and low-temperature
nomaly. Such an anomaly was shifted to lower temperature, at

0 K and with a large enhanced (relative) intensity with respect to
he anomaly at TN. Hydrogenation implies a large enhancement
f χ′′ below 30 K and also a disappearance of the small max-

Fig. 3. The real (χ′) and imaginary part (χ′′) of the first (closed markers) and
third harmonic (open markers) of AC susceptibility for TbMn2H0.5. The first
harmonic was measured at a frequency f = 125 Hz and at Hac = 1 Oe, and the
third harmonic was at f = 125 Hz and at Hac = 5 Oe.
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Fig. 4. Temperature dependence of magnetization, M(T) of TbMn2(H,D)2 in an
external magnetic field of 3 T. Inset: the enlarged phase-transition anomalies in
the magnetization measured at 3 T, 6 T and 9 T. For a clarity, the curves was
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ormalized to 1 at 300 K, i.e. the values M(T) − M300 K were shown. The double
pecific heat peak was shown for a comparison.

mum at 51 K in the χ′′
3(T ) curve. This enhancement suggests

ore freedom for Tb magnetic moments in the distorted lat-
ice. The similarity in both pure- and hydrogenated sample with
= 0.5 indicate that a big part of TbMn2H0.5 sample behave as
hydrogen-free TbMn2 material. These results support the sug-
estion that in TbMn2H0.5 two phases were co-existed; one is
lmost free from hydrogen (x = 0), and the other one with x ∼= 2.0
3].

No anomaly was revealed (PPMS) in the magnetization curve
(T), for TbMn2(H,D)2 at low temperatures. A large change,

owever, was observed at TN, in applied high external magnetic
eld. The magnetization measurements of TbMn2(H,D)2 at 3 T,
T and 9 T were shown in Fig. 4. In all cases the magnetization
ontinuously decreases with increasing temperature and reveals

n anomaly around 275–300 K. For clarity we showed (in
nset of Fig. 4) the temperature dependence of the normalized

agnetization, i.e. with the subtracted value at 300 K (M300 K).
he room temperature or the subtracted value respectively was

[

and Compounds 442 (2007) 365–367 367

.27μB/f.u. (B = 3 T), 0.53μB/f.u. (6 T) and 0.8μB/f.u. (9 T).
sharp peak was observed at TC = 288 K, i.e. at the high-

emperature maximum of the double peak in the C(T) curve,
nd a shoulder around 280 K, i.e. around the low-temperature
aximum of the double peak. The sharp peak at 288 K is

ttributed to the phase transition to the antiferromagnetic state,
hereas the wider shoulder at 281 K may be related to thermally

ctivated diffusion of hydrogen.

. Summary

Our investigations showed that the hydrogenation has a
trong influence on the ac susceptibility, magnetization and
pecific heat of TbMn2(H,D)x system. The phase separation
or x = 0.5 was shown to be not perfect from the viewpoint of
agnetic properties; the hydrogen-free phase is less than 75%.
or TbMn2(H,D)2 the transition to antiferromagnetic state at
88 K was observed, both in the specific heat and magnetization
easurements, whereas the peak at 280 K is considered to be

onnected with the hydrogen (re)ordering.
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4] H. Figiel, J. Przewoźnik, V. Paul-Boncour, A. Lindbaum, E. Gratz, M.
Latroche, M. Escorne, A. Percheron-Guégan, P. Mietniowski, J. Alloys
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